Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 602450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816460

RESUMO

Photoreceptor cells (PRC) are neurons highly specialized for sensing light stimuli and have considerably diversified during evolution. The genetic mechanisms that underlie photoreceptor differentiation and accompanied the progressive increase in complexity and diversification of this sensory cell type are a matter of great interest in the field. A role of the homeodomain transcription factor Onecut (Oc) in photoreceptor cell formation is proposed throughout multicellular organisms. However, knowledge of the identity of the Oc downstream-acting factors that mediate specific tasks in the differentiation of the PRC remains limited. Here, we used transgenic perturbation of the Ciona robusta Oc protein to show its requirement for ciliary PRC differentiation. Then, transcriptome profiling between the trans-activation and trans-repression Oc phenotypes identified differentially expressed genes that are enriched in exocytosis, calcium homeostasis, and neurotransmission. Finally, comparison of RNA-Seq datasets in Ciona and mouse identifies a set of Oc downstream genes conserved between tunicates and vertebrates. The transcription factor Oc emerges as a key regulator of neurotransmission in retinal cell types.

2.
Methods Mol Biol ; 1976: 167-184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977073

RESUMO

Neural crest cells are highly multipotent and strongly migratory cells and generate adult neural crest stem cells with varied roles in cellular homeostasis and regeneration. The optical transparency and ready accessibility of fish embryos make them particularly well-suited to high-resolution analysis of neural crest development. However, the dispersive nature of these cells adds to the challenge of their study, requiring that they be identified using marker expression. We describe key protocols for the analysis of neural crest marker expression in zebrafish and medaka, including whole-mount in situ hybridization to detect mRNA using conventional chromogenic substrates and the more recent RNAscope which gives readily multiplexed fluorescent detection and immunofluorescent detection of antigens.


Assuntos
Crista Neural/citologia , Animais , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Oryzias , Peixe-Zebra
3.
Methods Mol Biol ; 1976: 185-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977074

RESUMO

Neural crest cells are an important class of multipotent stem cells, generating highly diverse derivatives. Understanding the gene regulatory networks underlying this process is of great interest, but the highly migratory and thus widely dispersed nature of the differentiating cells makes isolation of cells difficult. Fluorescence-activated cell sorting (FACS) of transgenically labelled neural crest-derived cells after disaggregation of embryos is well-suited to purifying these cells. However, their diverse differentiation means that transcriptional analysis at single cell resolution is necessary to dissect the gene regulatory networks at play. NanoString technology provides a method for highly sensitive, quantitative transcriptional profiling for a pre-defined set of genes of interest. Here we provide a detailed protocol for FACS purification of neural crest-derived cells, sorted as single cells into a multi-well plate, and their subsequent NanoString profiling, using a predetermined gene set focused on pigment cells.


Assuntos
Citometria de Fluxo/métodos , Crista Neural/citologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular , Peixe-Zebra
4.
Methods Mol Biol ; 1976: 195-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977075

RESUMO

Neural crest cells are a highly multipotent and migratory cell type that are important for adult pigment pattern formation, cellular homeostasis, and regeneration. The optical transparency and accessibility of fish embryos makes them particularly well-suited to high-resolution analysis of neural crest development. However, the dispersive nature of these cells adds to the challenge of their study. We describe key protocols for the analysis of neural crest development in zebrafish and medaka, including live imaging of neural crest cells and differentiating pigment cells and transient transgenesis assays that can be used to manipulate neural crest development.


Assuntos
Crista Neural/citologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oryzias , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...